设为首页|English
当前位置: 学院首页 > 校园信息 > 学术公告 >

学术公告

美国斯坦福大学珍奈儿·汤普森博士学术报告

信息来源: 未知 发布日期: 2016-04-27 17:13 浏览次数:

 

428号下午1330中心邀请斯坦福大学Janelle Thompson's教授做蓝藻水华生物防治与环境微生物学相关内容的专题讲座,个人简介见附件。请科研人员,硕博士研究生积极参与。各研究室组织本研究室的科研人员及研究生按时参加。因参加讲座人数较多,会议地点改在:南区培训教育楼1楼阶梯教室

 

附简历如下:

Faculty -Janelle R. Thompson珍奈儿·汤普森

 

Janelle R. Thompson 珍奈儿·汤普森

Visiting Assistant Professor客座助理教授

MIT
Parsons Laboratory
帕森斯实验室
Room 48-331
15 Vassar Street
Cambridge, MA, 02139

Telephone: 617.324.5268Email: janelle@mit.eduResearch Website: http://thompsonlab.mit.edu/Assistant: DarleneStrother / strother@mit.edu

Education教育背景

·        Ph.D. 2005, MIT and Woods HoleOceanographic Institute

2005年获MIT伍兹霍尔海洋研究所博士学位

·        M.S. 1999, Stanford University

1999年获斯坦福大学硕士学位

·        B.S. 1998, Stanford University

1998年获斯坦福大学学士学位

Research Interests研究兴趣

We are interested in understanding the relationship between the structureof microbial communities and their function. We are employing the tools ofmolecular biology, genomics, and genetics to identify the components ofmicrobial communities, and to study their dynamics, interactions, andorganization. Linking the activities of microbes to their genomic content andpopulation structure is a critical step towards manipulating microbial systemsfor human benefit, be it pollution degradation or protection against pathogens.

我们对了解微生物群落的结构和功能之间的关系很感兴趣。我们使用分子生物学、基因组学和基因工具来识别微生物群落的组成部分,并研究他们的动态、交互和组织结构。将微生物的活动与其基因内容及群落结构链接起来是控制微生物系统使其造福人类的关键环节,无论是污染降解或是对病原体的抵抗。

Teaching Interests技术兴趣

·        1.083 - Environmental Health Engineering环境健康工程

·        1.89 - Environmental Microbiology 环境微生物学

研究项目

1Biocontrol of Cyanobacterial AlgalBlooms: Insights Through Multi-Omics Approaches蓝藻水华生物防除:多组学方法的见解

  首席研究员:珍奈儿·汤普森    日期:2015914

2Occurrence and Abundance of MicrocystisCyanophage in Singapore's Reservoir新加坡水库内微胞藻属噬藻体的出现和大量繁殖

首席研究员:珍奈儿·汤普森    日期:2015914

3Carbon Dioxide Capture and Storage (CCS)二氧化碳捕获和存储(CCS

首席研究员:珍奈儿·汤普森    日期:20141126

CSS is currently being implemented as a strategy to mitigateatmospheric emissions of CO2, and help stabilize atmospheric greenhouse gasconcentrations. In CCS, carbon dioxide is separated and captured from anindustrial process stream, before being compressed and injected deepunderground into geological formations (e.g. hydrocarbon or salt-water filled(saline) reservoirs) for storage on time scales of 1,000 years or more.

CCS是目前正在实施的减少大气中二氧化碳的排放并帮助稳定大气温室气体浓度的策略。在CCS中,二氧化碳被从工业处理流程中分离和捕获,其后被压缩并注入地下地质结构(如含碳氢化合物或海水(生理盐水)的水库),以供长达千年以上的存储。

4Microbial Symbiosis in the Starlet Sea Anemone Nematostella vectensis

星型海葵Nematostella vectensis中的微生物共生

首席研究员:珍奈儿·汤普森    日期:20141126

In the natural environment animal tissues harbor diversecommunities of microbes. Increasingevidence suggests these communities are shaped by host-selection andprovide beneficial functions including nutrient cycling andpathogen protection. How such tissue-specific microbialcommunities are assembled and maintained remains a central question forunderstanding the role of microbes in health and disease. Thestarlet sea anemone Nematostella vectensis is emerging as a model foranimal development and evolution because the phylum Cnidaria is one of theearliest branches on the animal tree of life. In addition, N. vectensis is closelyrelated to corals and is a tractable laboratory model for probing themechanisms of disease and disease resistance in the class Anthozoa.

在自然环境中,动物组织存在着多元化的微生物群落。越来越多的证据表明这些群落是由寄主选择塑造,并提供对寄主有益的功能,包括养分循环和病原体预防。这类基于组织的微生物群落是如何形成及维护的,仍是理解微生物在健康和疾病上的作用的一个核心问题。星型海葵Nematostella vectensis正成为一个研究动物发展和演化的模版,因为刺胞动物门是动物生命树的最早的分支。此外, 星型海葵与珊瑚有密切相关,是一个在探索疾病机制和珊瑚虫纲的抗病性上容易处理的实验室模型。

5Molecularecology of toxins and virulence factors

分子生态学的毒素和毒力因素

首席研究员:珍奈儿·汤普森    日期:20141126

Molecular Ecology of Toxigenic Microcystis -- Cyanobacterialtoxins are a public health risk from recreational exposure to freshwater. Freshwater Reservoirs, such as theKranji Reservoir in Singapore (pictured), harbor both Microcystin-producing cyanobacteriaand those that lack the genes needed for toxin production. We are interested in thefollowing questions: Under what conditions are cyanobacterial toxinbiosynthesis genes activated? And,Under what conditions do toxin-producing cyanobacteria have a competitiveadvantage in the Kranji Reservoir? Understandingthe molecular ecology of toxin production will improve prediction of hightoxin/high risk algal blooms.
Molecular Mechanisms of Virulence in Aquaculture Pathogens --Reports of mass-mortality in natural and cultivated marine populations areincreasing world-wide and many marine diseases have suspected microbialetiologies. With collaborators at the Prince ofSongkla University in Thailand we are developing single and mixed-straininfection models of secretion and regulator mutants to investigate themechanisms by which Vibrios closely related to V. harveyi and V.parahaemolyticus (>98% rRNA similarity) cause disease and mortality inmarine invertebrates (e.g. the black tiger shrimp Penaeus monodon).

产毒微胞藻属的分子生态学——蓝藻毒素造成公共卫生风险,因为人们会在休闲放松时接触淡水。淡水水库,如新加坡的Kranji水库,既生存着产生微囊藻毒素的蓝藻,也存有那些缺乏毒素生产基因的蓝藻。我们感兴趣的是以下问题:在什么条件下蓝藻毒素生物合成基因会被激活?在什么条件下产毒蓝藻在Kranji水库有竞争优势?理解毒素产生的分子生态学将提高高毒素/高风险海藻水华的预测率。

在水产养殖病原体中毒力的分子机制——全球关于自然及培育的海洋种群大规模死亡的报道正日益增多,而许多海洋疾病都疑有微生物病因。我们正与泰国宋卡王子大学的合作者一起开发单菌株和混合菌株的分泌感染模型及调节突变体,以调查与V. harveyi及副溶血弧菌 > 98% rRNA相似)密切相关的弧菌在海洋无脊椎动物(如:黑虎虾Penaeusmonodon)中引起疾病和死亡率的机制。

5Life in the Oceans

 海洋生物

首席研究员:珍奈儿·汤普森     日期:2013114

The well-being, prosperity, and sustainability of the humanenterprise relies on the functioning of Earth’s oceans and life within it. The ocean represents our planet’slargest habitat and supports more than half its species.
Photosynthesis in the ocean plays a vital role in the globalclimate and carbon cycle and provides about half of Earth’s oxygen. The microscopic plants that carry outthis photosynthesis – phytoplankton – form the base of the ocean food weband, as such, feed most of the species in the sea.

人类的幸福、繁荣和事业的可持续发展都依赖于地球上的海洋和其中生命的运作。海洋是地球上最大的栖息地,支持超过一半的地球物种。

海洋中光合作用在全球气候和碳循环中起着至关重要的作用,提供了地球上约一半的氧气。这些进行光合作用的微生植物——浮游植物——构成了海洋食物网的基础,也以此饲养了大多数的海洋物种。

Humans rely on some of these species for food and income. The problem: many wild stocks arebeing harvested at unsustainable rates and are in danger of disappearing. Increasing temperatures and acidity ofocean waters will likely change the structure of ocean food webs inunforeseeable ways. These arejust a few of the many warning signs about the fate of life in theocean—and the health of the oceans has direct ramifications for life on land.
Researchers at MIT and WHOI are studying big questions, such as howlife evolved in the ocean, the role of microbes in ocean ecosystems, thereasons behind the global decline of fish stocks and coral reefs, and the waysin which life in the sea is an integral part of Earth’s biosphere.

人类依靠部分海洋物种作为食物和收入来源。问题是:人们正以不可持续的速率在收割许多野生种群,其中的部分甚至有消失的危险。而海水的温度的升高和酸度的增加可能会以不可预见的方式改变海洋食物网的结构。这些关于海洋生命的可悲未来已向我们拉响了警报,而海洋的健康与否将直接影响陆地上的生命。

麻省理工学院的研究人员和伍兹霍尔海洋学研究所正在研究大问题,比如生命在海洋里的进化,海洋生态系统中微生物的作用,全球鱼类资源和珊瑚礁减少的原因,以及海洋生物参与地球生物圈的重要组成部分的方式。

This research is complemented by advances in engineering that arehelping us to observe and track life in the ocean and by work being donein the public policy arena that will enable better stewardship. The ocean is also being tapped asa vast reservoir of novel biochemicals that are poised for development aspharmaceuticals, diagnostic agents, and bioenergy modules.

这项研究获益于先进的工程技术,其帮助我们观察和跟踪海洋生物,及公共政策领域工作的进展,使我们能更好的管理。海洋也被当作一个拥有新奇生化制剂的巨大水库,可发展医药、诊断制剂及生物能源模块。

Key Questions Being Explored:
(*) What sets the pattern of community structure in the ocean?
(*) How do marine ecosystems mediate biogeochemical cycles?
(*) What impact does human activity have on the ocean’s food web?
(*) How do ecosystems and fisheries respond to changes in theenvironment?

(*) How can we tap developments in robotics toincrease our understanding of

(*) How can we best exploit connections betweenocean ecology and human health?

正在研究的关键问题:

(*)什么决定海洋里群落结构的模式?

(*)海洋生态系统如何调节生物地球化学循环?

(*)人类活动对海洋食物网有何影响?

(*)生态系统和渔业如何应对环境的变化?

(*)我们如何利用机器人技术的发展来提高我们的理解

(*)我们如何利用海洋生态和人类健康之间的联系为好?

6The ThompsonLab: Microbial Ecology and Engineering
Depts/Labs/Centers: Department of Civil and Environmental Engineering

汤普森实验室:微生物生态学和工程

首席研究员:珍奈儿·汤普森    日期:2008128
The Thompson Lab studies how microbes interact with theirenvironments in natural and engineered settings. Our goal is to leverage afundamental understanding of the activities of microbial systems to promote thesustainable management of environmental resources. Our specific projects includeinvestigating microbial activity in subsurface environments duringgeologic sequestration of carbon dioxide, determining how interactions withmicrobes controls the balance between health and disease in reef-buildingcorals and hexacorals, and investigating the ecological significance andregulation of bacterial virulence factors and toxins. Our approach is multidisciplinary-molecular (quantitative PCR, sequencing), genetic (cloning, mutagenesis),and computational (genomics,transcriptomics, phylogenetics). Understanding how microbialpopulations interact to mediate activities such as virulenceand biogeochemical cycling will improve our ability to model theactivities of microbes in the environment, monitor their impact on humanand ecosystem health, and to design remediation and disease preventionstrategies.

汤普森实验室研究微生物在自然及人造情境下如何与环境相互作用。我们的目标是利用对微生物系统活动的根本理解,来促进环境资源的可持续管理。我们的具体项目包括调查在二氧化碳地质封存期间地表下微生物的活动,决定造礁珊瑚和六射珊瑚与微生物的相互作用是如何控制其自身健康和疾病之间的平衡,以及调查调节细菌毒力因素和毒素的生态意义。我们的方法是跨学科的——分子学(定量PCR测序)、基因学(克隆、突变)和计算的(基因组学、转录组、种系遗传学)。了解微生物种群如何与介导活动如毒力与生物地球化学循环相互作用,将提高我们模仿微生物在环境中活动的能力,监控它们对人类和生态系统健康的影响,设计补救和疾病预防策略。

This FacultyMember is an Author of the Following Papers:

Changesin Lipid and Proteome Composition Accompany Growth of Bacillus subterraneusMITOT1 Under Supercritical CO2 and May Promote Acclimation to AssociatedStresses

Full Author List: Kyle C Peet, Kodihalli CRovindra, John S Wishnok MIT, Roger E Summons MIT, Janelle Renee Thompson MIT

Associated DLCs: Department of Earth,Atmospheric, and Planetary Sciences

Receipt Date: 09/08/15 # Pages: 47Classification: Preprint/Working Paper

ILP Paper #: Paper Size: 4.2MB Paper Type:

Pub #: A0815-036

URL:http://ilp.mit.edu/media/papers/pub/Aug2015/8-36-2015.pdf

Abstract:

Recent demonstration that multiple Bacillusstrains grow in batch bioreactors containing supercritical (sc) CO2 (i.e.>73 atm, >31°C) is surprising given the recognized roles of scCO2 as asterilant and solvent. Growth under scCO2 is of interest for biotechnologicalapplications and for microbially-enhanced geologic carbon sequestration. Wehypothesize that Bacillus spp. may alter cell wall and membrane composition inresponse to scCO2-associated stresses. In this study, protein expression and membranelipids of B. subterraneus MITOT1 were profiled in cultures grown underheadspaces of 1 and 100 atm of CO2 or N2. Growth under 100 atm CO2 revealedsignificantly decreased fatty acid branching and increased fatty acyl chainlengths relative to 1 atm cultures. Proteomes of MITOT1 grown under 1 and 100atm pressures of CO2 and N2 were similar (Spearman R>0.65), and principalcomponent analysis revealed variation by treatment with the first two principalcomponents corresponding to headspace gas (CO2 or N2) and pressure (1 atm and100 atm), respectively. An S-layer protein was among the most highly expressedprotein under all conditions, and expression of numerous citric acid cycle andelectron transport proteins suggest MITOT1 may be capable of anaerobicrespiration. Amino acid metabolic proteins were enriched under CO2, includingthe glycine cleavage system, previously shown to be upregulated in acid stressresponse. These results provide insights into the stationary phase physiologyof strains grown under scCO2, suggesting modifications of cell membranes andamino acid metabolism may be involved in response to acidic, high CO2conditions under scCO2.

Selected Publications

1.    Thompson, J. R. and M. F. Polz. Dynamics of Vibrio     populations and their role in environmental nutrient cycles. The Biology of     Vibrios. American Society of Microbiology Press (2006)弧菌群体动力学及其在环境养分循环中的作用

2.    Luyten, Y. A., Thompson, J. R., Polz,     M. F., and D. L. Distel. Symbiont community composition varies among     members of a single host population of the wood-boring bivalve Lyrodus     pedicellatus (Bivalvia: Teredinidae) Appl Environ Microbiol. (2006)     72(1):412-7.共生者社区组成在吃木的双壳古琴船蛆属梗节单一寄主种群的成员间变化

3.    Thompson, J. R., Pacocha, S. E., Pharino, C.,     Klepac-Ceraj, V., Benoit, J., Sarma-Rupavtarm, R., Distel, D. L., and M.     F. Polz. Genotypic Diversity within a Natural Coastal Bacterioplankton     Population. Science (2005) 307(5713):1311-1313

自然沿海浮游细菌种群内的基因型多样性

4.    Thompson, J. R., Randa, M. A., Marcelino, L. A.,     Tomita-Mitchell, A., and M. F. Polz. Diversity and Dynamics of a North     Atlantic Vibrio Community. Appl Environ Microbiol (2004) 70(7)4130-4110.北大西洋弧菌社区的多样性和多变性

5.    Thompson, J. R., Marcelino, L. A., and M. F. Polz.     Heteroduplexes in Mixed-Template Amplifications: formation, consequence     and elimination by 'reconditioning PCR'. Nucleic Acids Res. (2002)     30(9)2083-2088.在混合模版放大中的杂合双链:通过“修补PCR”来形成、结果和消除。